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Abstract

Results from earlier measurements on hydropower generators have indicated relatively large eccentricities and shape

deviations in the rotor and stator. These non-symmetric geometries produce an attraction force between the rotor and the

stator, called unbalanced magnetic pull (UMP). The UMP force can produce large vibrations which can be dangerous to

the machine. A mathematical model is developed to describe the shapes of the rotor and stator, and the corresponding

UMP is obtained through the law of energy conservation. The target of the paper is to analyse the dynamics of a generator

due to shape deviations in the rotor and stator. As rotor-model, a balanced Jeffcott rotor is used. A linearization of the

UMP indicates the importance of considering the nonlinear effects. The stability of some attractors are analysed and the

generator dynamics are further investigated by simulating the basin of attraction. The magnitudes are approximately

obtained when the shape deviations become dangerous for the generator. It is concluded which shape deviations that are

more dangerous than others. In hydropower generator maintenance the shapes of the rotor and stator are frequently

measured. The results from this paper can be used to evaluate such measurements and estimate the stability and robustness

by simulations.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Hydropower generators have small air-gaps between the rotor and the stator. Usually, it is about 0.2% of
the stator radius. Measurements on hydropower generator shapes are frequently carried out during
maintenance, indicating that all hydropower generators are associated with some degree of asymmetry in the
air-gap. Talas and Toom [1] have reported on a variation of the air-gap deviating more than �10%. These
asymmetries distort the air-gap flux density distribution, producing an attraction force between the rotor and
the stator, called unbalanced magnetic pull (UMP). The effect of UMP can be vibrations which are dangerous
to the machine. There are documented cases, e.g. Talas and Toom [1], where the rotor has been in contact with
the stator due to air-gap asymmetry.
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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N.L.P. Lundström, J.-O. Aidanpää / Journal of Sound and Vibration 301 (2007) 207–225208
A literature survey indicates intensive study on the methods of calculating UMP caused by eccentricity, as
well as the vibration characteristics of a rotor system due to UMP. Early papers, such as Behrend [2] and
Robinson [3], suggested linear equations to calculate the magnetic pull for an eccentricity up to 10% of the
average air-gap. Covo [4] and Ohishi et al. [5] improved the equations for calculating the magnetic pull by
considering the effect of saturation on the magnetization curve. Belmans et al. [6] developed an analytic model
for vibrations in induction motors. They showed that the UMP acting on the rotor also consisted of harmonic
components. The paper put forward the idea of modulating the magnetic flux density by the air-gap
permanence, expressed as a Fourier series. Fruchtenicht et al. [7] studied the self-excited transverse vibration
of a four-pole machine, Belmans et al. [8] investigated the radial stability of the shaft in a two-pole machine
whereas Smith and Dorrell [9] studied the UMP by winding analysis. Finite element analysis technique can
now provide solutions of the UMP, though this approach is still very computationally expensive and can often
not provide insight into the origins and key factors of its production, Debortoli et al. [10], Arkkio [11]. Dorrell
[12] calculated UMP for non-uniform rotor eccentricity and tooth saturation, Guo et al. [13] studied the effects
of UMP and the vibration level in three-phase generators with any number of pole pairs, Wang et al. [14]
derived the UMP due to eccentricity through the law of energy conservation and studied the free and forced
vibrations for rotors of electric motors, and Holopainen et al. [15] studied the rotordynamic effects of
electromechanical interaction on induction motors. Karlsson and Aidanpää [16] studied the dynamic
behaviour in a hydropower rotor system due to the influence of generator shape and fluid dynamics.
Williamson and Abdel-Magied [17] calculated the UMP in induction motors with asymmetrical rotor cage.
They showed that with an even distribution pattern of bar faults the UMP may be vanishingly small.

In this paper, the UMP due to an arbitrary disturbed air-gap is derived through the law of energy
conservation. It is also compared to a linear model for calculating UMP. The dynamic consequences of UMP
due to shape deviations on the rotor and stator are studied using a balanced Jeffcott rotor as a simplified
model of a hydropower generator. A mathematical model describes the shapes of the rotor and stator. The
dynamic behaviour of the generator is analysed through the use of symmetries for certain cases. For different
shape deviations the basin of attraction is studied for rotor–stator impact motions. From this, the robustness
of the generator is approximated for different rotor and stator shapes.

2. Generator geometry

Fig. 1 shows the geometry of the generator model, having an arbitrary non-circular shaped rotor and stator.
The generator is treated as a balanced Jeffcott or Laval rotor having length l0, mass g and stiffness k of the
generator axis. The rotor rotates at a constant counterclockwise angular speed o. Point Cs gives the location
of the bearings while point Cr is the rotational centre of the rotor. The coordinate system has the origin at Cs,
r is the rotor radius and s is the stator radius.

Let r0 and s0 be the undisturbed radius of the rotor and the stator, respectively. An arbitrary
non-circular shape can be described by adding a Fourier series of cosine terms to the rotor radius, r, and the
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Fig. 1. The generator model; (a) the Jeffcott rotor; (b) the cross-section of the generator.
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Fig. 2. The geometry of the rotor for dr
n ¼ r0=3; n ¼ 1; 2; 3; 4.
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stator radius, s,

r ¼ r0ðzÞ þ
X1
n¼1

dr
nðzÞ cos nðjþ ar

nðzÞÞ, (1)

s ¼ s0ðzÞ þ
X1
m¼1

ds
mðzÞ cos mðjþ as

mðzÞÞ, (2)

where

dr
nðzÞX0; ds

mðzÞX0;
X1
n¼1

dr
nðzÞ þ

X1
m¼1

ds
mðzÞog0ðzÞ. (3)

Here, g0 ¼ s0 � r0 is the undisturbed air-gap, dr
n and ds

m are referred to as the rotor and stator perturbation
parameters while ar

n and as
m are the corresponding phase angles. To simplify notations, it is hereinafter

assumed that dr
n ¼ ds

m ¼ 0;8m; n 2 N, if nothing else is mentioned. N is the set of all natural numbers. Fig. 2
shows the rotor geometry for dr

n ¼ r0=3; n ¼ 1; 2; 3; 4, and phase angle ar
n ¼ 0. Note that the stator has the

same geometry for ds
m ¼ dr

n and m ¼ n.
The case dr

140 and ds
140 will correspond to rotor eccentricity and stator eccentricity, respectively. Since

dynamic eccentricity is normally small compared to the dimensions of the generator, it is assumed that the
perturbed air-gap (g) is

g ¼ sðz;jÞ � rðz;jÞ � x cos j� y sin j, (4)

where ðx; yÞ gives the position of Cr. Eqs. (1), (2) and (4) gives, after adding the o rotation

g ¼ g0ðzÞ þ
X1
m¼1

ds
mðzÞ cosmðjþ as

mÞ �
X1
n¼1

dr
nðzÞ cos nðjþ ar

nðzÞ � otÞ � x cos j� y sin j. (5)

The geometric model is now completed.

3. Unbalanced magnetic pull

3.1. Calculation of the UMP

Based on the theory of magnetic field [18], the potential energy reserved in the air-gap can be expressed as

E ¼

Z
all space

Bðx; y; z; t;jÞ2

2m0
dV , (6)

where B is the magnetic flux density (also called the B-field) in the air-gap and m0 is the permeability of air. For
an approximation, the relations between the B-field and the air-gap widths are assumed as in Ref. [14],

B ¼
B0ðzÞg0ðzÞ

gðx; y; z; t;jÞ
. (7)

B0 is the uniformly distributed B-field for an undisturbed air-gap, i.e. g ¼ g0. Next, consider a volume element
dV as shown in Fig. 3.
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Fig. 3. The volume element dV .
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According to Eqs. (6) and (7), the potential energy, dE, reserved in dV is given as

dE ¼
B0ðzÞ

2g0ðzÞ
2

2m0gðx; y; z;j; tÞ
2
dV . (8)

Eq. (8) shows that if the air-gap is disturbed from the current value g to a new value gþ dg, dE will increase if
dgo0 and decrease if dg40. Let dEmech be increments of mechanical energy input to dV and dEelectric

increments of the electric energy output from dV . When considering the energy conversion between the
magnetic and mechanical fields over an infinitesimal period of time, the law of energy conservation requires,
after neglecting losses

dEmech ¼ dðdEÞ þ dEelectric. (9)

As in the case of eccentricity [14], it is assumed that the electric energy output from the generator is
independent of the air-gap variations, thus dEelectric ¼ 0. If dgo0, then dðdEÞ ¼ dEmech40. Since the
mechanical energy input increases when g decreases, a force acting in the radial direction has to be present.
This force is denoted by df . Then, the virtual work done by this force is df dg ¼ �dðdEÞ, which gives

df ¼ �
d

dg
ðdEÞ. (10)

In Eq. (8), note that, since dV ¼ rdrdzdj, the potential energy dE will increase if r increases when g is
constant. This small change in df cannot be considered in Eq. (10). But, since the change of g and r is of
approximately the same size and g5r, the change of dE due to variations in r is considered to be negligible.
Therefore, to simplify the calculations it is assumed that dV ¼ u0 drdzdj, where u0 ¼ ðr0 þ s0Þ=2, and
dr ¼ g. Eq. (8) then yields

dE ¼
B0ðzÞ

2 g0ðzÞ
2 u0ðzÞ

2m0gðx; y; z; t;jÞ
dzdj. (11)

According to Eq. (10), the force df is given by

df ¼ �
d

dg
ðdEÞ ¼

B0ðzÞ
2g0ðzÞ

2u0ðzÞ

2m0gðx; y; z; t;jÞ
2
dzdj. (12)

Hence, the total forces in the x- and y-directions can be expressed as

f x ¼
1

2m0

Z 2p

0

Z l0

0

B0ðzÞ
2g0ðzÞ

2u0ðzÞ

gðx; y; z; t;jÞ2
cos jdzdj, (13)

f y ¼
1

2m0

Z 2p

0

Z l0

0

B0ðzÞ
2g0ðzÞ

2u0ðzÞ

gðx; y; z; t;jÞ2
sin jdzdj. (14)
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Table 1

Numerical values from the 18MW hydropower generator

s0 Average stator radius 2.775m

l0 Length of the generator 1.18m

g0 Average air-gap 0.0125m

g Mass of the rotor 98165 kg

k Stiffness of the axis 3:456� 108 N=m
o Rotor rotation speed 14.2 rad/s

km Magnetic stiffness 1:4715� 108 N=m
m0 Permeability of air 4p� 10�7 Vs=Am
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3.2. Properties of the UMP

The generator geometry and the B-field are now assumed constant in z through the generator length l0.
Numerical values from an 18MW hydropower generator are used. The values are given in Table 1. These
values are used in all simulations presented in this paper.

Fig. 4 shows UMP for the static case x ¼ y ¼ 0 with phase angles chosen to zero. Fig. 4(a) illustrates f x and
f y for rotor and stator eccentricity, Fig. 4(b) shows f x for stator eccentricity together with dr

n ¼ 0:1g0, n ¼ 1, 2,
3. Fig. 4(c) illustrates f x and f y for dr

2 ¼ ds
3 ¼ 0:3g0, and Fig. 4(d) shows f x for dr

2 ¼ ds
m ¼ 0:3g0, m ¼ 1; . . . ; 7.

Note that m even gives no UMP.
For ideal circular generator geometry and y ¼ 0, the integral in Eq. (13) can be solved analytically to yield

f x ¼
l0g

2
0B2

0u0

2m0

Z 2p

0

cos j

ðg0 � x cos jÞ2
dj ¼ km

x

ð1� ðx2=g2
0Þ

3=2
. (15)

Here, the magnetic stiffness, km, given in Table 1, is defined as

km ¼
pl0B2

0u0

m0g0

. (16)

Eq. (15) is similar to results obtained by Wang et al. [14] and Sandarangani [19]. For xp0:1g0, the relative
error is less than 2% when approximating Eq. (15) with the linear function f L

¼ kmx. Therefore, a linear
model of the UMP is interesting for small shape deviations and will be considered in Section 5.1.

4. The equation of motion

The equation of motion for the forced Jeffcott rotor is non-autonomous and nonlinear and consists of two
second-order differential equations

g €xþ c _xþ kx ¼ f xðx; y; tÞ,

g €yþ c _yþ ky ¼ f yðx; y; tÞ. ð17Þ

Here, g is the mass of the rotor, k is the stiffness of the rotor axis and c being a linear viscous damping. In the
case of the linear UMP, discussed in Section 5.1, the damped natural frequency becomes

od ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k � km

g
�

c

2g

� �2
s

� 44:6 rad=s. (18)

The numerical values of k, km and g can be found in Table 1. c is chosen to give the damping ratio z ¼ 0:1. The
angular velocity, o, of the rotor is 14.2 rad/s through all simulations. In non-dimensional form, Eqs. (17)
yields

X 00 þ 2zX 0 þ X ¼ FX ðX ;Y ; tÞ,

Y 00 þ 2zY 0 þ Y ¼ FY ðX ;Y ; tÞ. ð19Þ
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Fig. 4. UMP as a function of time t: (a) f x (dotted) and f y (solid), ds
1 ¼ dr

1 ¼ 0:3g0; (b) f x for ds
1 ¼ dr

n ¼ 0:1 g0, n ¼ 1 (dotted), n ¼ 2

(solid), n ¼ 3 (dashdot); (c) f x (dotted) and f y (solid), dr
2 ¼ ds

3 ¼ 0:3 g0; (d) f x for dr
2 ¼ ds

m ¼ 0:3 g0, m ¼ 1 (dotted), m ¼ 2 (solid), m ¼ 3

(dashdot), m ¼ 4 (dashed), m even (solid line at zero UMP).
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Here, the non-dimensional quantities

X ¼
x

g0

; Y ¼
y

g0

; DR
n ¼

dr
n

g0

; DS
m ¼

dS
m

g0

, (20)

G ¼
gðx; y; t;jÞ

g0

; O ¼ o

ffiffiffi
g
k

r
; t ¼ t

ffiffiffi
k

g

s
. (21)

have been introduced. The notation implies differentiation with respect to the non-dimensional time t. The
air-gap G, and the forces FX and FY yield

FX ¼
km

2pk

Z 2p

0

cos j

GðX ;Y ; t;jÞ2
dj, (22)
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F Y ¼
km

2pk

Z 2p

0

sin j

GðX ;Y ; t;jÞ2
dj, (23)

G ¼ 1þ
X1
m¼1

DS
m cos mðjþ as

mÞ �
X1
n¼1

DR
n cos nðjþ ar

n � OtÞ � X cos j� Y sin j. (24)

5. Analysis

5.1. Linear model of the UMP

Recall from Section 3.2 that the UMP is nearly linear for small shape deviations. A linearization of Eqs. (22)
and (23) can be obtained using the Maclaurin series

1

ð1� �Þ2
� 1þ 2�, (25)

with

� ¼ �
X1
m¼1

DS
m cos mðjþ as

mÞ þ
X1
n¼1

DR
n cos nðjþ ar

n � OtÞ þ X cos jþ Y sin j. (26)

From Eqs. (22) and (25), the linearization of FX (FL
X ), can be expressed as

F L
X ¼

km

2pk

Z 2p

0

ð1þ 2�Þ cos jdj

¼
km

k
ðX � DS

1 cos as
1 þ DR

1 cosðOt� ar
1ÞÞ. ð27Þ

Applying the same procedure in the Y -direction gives

FL
Y ¼

km

k
ðY þ DS

1 sin as
1 þ DR

1 sinðOt� ar
1ÞÞ. (28)

From Eqs. (27) and (28) it is clear that only DR
1 and DS

1 (rotor and stator eccentricity), affect the UMP.
5.2. Rotor or stator eccentricity

For ideal circular generator geometry, a stable equilibrium in the centre and a circle of unstable equilibria
due to the nonlinear UMP exist in Eqs. (19). If stator eccentricity is added to this, i.e. DS

140, these equilibria
will move, and for a certain value of DS

1 stability is lost. If rotor eccentricity is added instead, i.e. DR
140, there

exists a circular limit cycle having periodicity equal to the driving frequency (synchronous whirling motion).
Note that these kind of machines are always operating at undercritical conditions, recall Eq. (18). Therefore,
when writing Eqs. (19) in polar coordinates

X ¼ R cos Y,

Y ¼ R sin Y, ð29Þ

it is assumed that

R0 ¼ 0; and Y0 ¼
O; if DR

140;

0; if DS
140:

(
(30)
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With Eqs. (29) and (30), Eqs. (19) takes the form

� RY02 cosY� 2zRY0 sinYþ R cosY ¼ F X ,

� RY02 sinYþ 2zRY0 cosYþ R sinY ¼ FY . ð31Þ

With F R ¼ F X cosYþ F Y sin Y, this simplifies to

Rð1�Y02Þ ¼ FR. (32)

The term RY02 corresponds to the centrifugal force. There is symmetry in the air-gap for both cases of
eccentricity, and FR will point towards the shortest air-gap. Therefore, FR can be solved similar to Eq. (15),
and the equation to solve yields

Rð1�Y02Þ ¼
km

k

Rþ D

ð1� ðRþ DÞ2Þ
3
2

; D ¼
DR
1 ; if DR

140;

�DS
1 ; if DS

140:

(
(33)

Thus, to use Eq. (33), D should be replaced by �DS
1 if stator eccentricity is considered, and by DR

1 if rotor
eccentricity is considered. For zero eccentricity and the values given in Table 1, Eq. (33) has the solutions

R ¼ 0 or R ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

km

kð1�Y02Þ

� �2
3

s
�
�0:6414 if DR

140;

�0:6588 if DS
140:

(
(34)

By varying the eccentricity in Eq. (33), bifurcation diagrams relating to Eqs. (19) can be found numerically.
The phase angle Y0 is introduced to give the direction of R, such that the negative solutions in R can be
illustrated as positive with Y0 ¼ p. The bifurcation diagram for rotor eccentricity is shown in Fig. 5(a) and
yields three limit cycles; C1, C2 and C3. C1 meets C2 at DR

1 � 0:1658, only C1 is stable and is therefore of
engineering interest. C1 is the resulting attractor corresponding to synchronous whirling motion. C3

corresponds to the phase Y0 ¼ p whereas C1 and C2 to Y0 ¼ 0. This means that C2 is the solution
corresponding to the case when the rotor is moved in the same direction as C1, and C3 is the solution when the
rotor is moved in the direction opposite to C1. Thus, C3 will exist for increasing DR

1 until the rotor hits the
stator. The bifurcation diagram for stator eccentricity is shown in Fig. 5(b) and yields three equilibria; E1, E2

and E3. E1 meets E2 in a fold-bifurcation at DS
1 � 0:1810, only E1 is stable and is therefore of engineering

interest. E3 corresponds to phase Y ¼ 0 whereas E1 and E2 to Y ¼ p. This means that E2 is the solution
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Fig. 5. Bifurcation diagrams to System (19): (a) DR
140 (rotor eccentricity). R is the radius of limit cycles. (b) DS

140 (stator eccentricity). R

gives the location of equilibria.
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corresponding to the case when the rotor is moved in the same direction as E1, and E3 is the solution when the
rotor is moved in the direction opposite to E1. Thus, E3 will exist for increasing DS

1 until the rotor hits the
stator. Note that it can exist also other attractors in these cases.

5.3. Stable equilibrium at the origin

When the rotor rotates at the origin, the UMP is zero for certain shape deviations due to their geometry,
recall Fig. 2. The UMP is zero if G is periodic in j with a period of 2p=q, q 2 N and qX2. To see this, consider
the UMP from each period of G. Since G is periodic and UMP is a function of only G, all q UMPs are
identical. Therefore, the sum of the forces becomes zero if G passes two or more periods during one
revolution. In these cases, only a moment in the z-direction can be induced by the electro-magnetic field. Fig. 6
shows the generator for the two simple cases DR

240;DS
240 (to the left) and DR

240;DS
340 (to the right). In the

case DR
240;DS

240, G is periodic with period p and, therefore, the UMP is zero. This can be clarified by
drawing a line through the origin with an arbitrary slope (dashed line in the figure). In the case DR

240;DS
340

the period of G is 2p and there will be a resulting UMP.
Thus, if it is possible to find an integer qX2 such that

Gð0; 0; t;jÞ ¼ G 0; 0; t;jþ
2p
q

� �
(35)

holds, the UMP is zero. Here, G is given by Eq. (24) with X ¼ Y ¼ 0. Since Eq. (35) needs to hold
8DR

n X0; 8DS
mX0; n;m 2 N, and 8tX0, it reduces to

cos nðjþ ar
n � OtÞ ¼ cos n jþ ar

n � Otþ
2p
q

� �
8 n 2 NR, (36)

cos mðjþ as
mÞ ¼ cos m jþ as

m þ
2p
q

� �
8m 2 NS. (37)

Here, NR is the set of all natural numbers such that DR
n 40, and NS is the set of all natural numbers such that

DS
m40. From Eqs. (36) and (37); if NR is empty, Eq. (35) holds for mX2; if NS is empty, Eq. (35) holds for

nX2. If both NS and NR are empty, Eq. (35) holds (ideal circular geometry). Otherwise, Eq. (35) holds if it is
possible to find integers pn and pm such that

q ¼
n

pn

¼
m

pm

X2; q 2 N 8n 2 NR 8m 2 NS. (38)

From Fig. 4(d), recall that f x is zero for m even, since n ¼ 2.
If Eq. (38) holds, the UMP is zero, and therefore, Eqs. (19) have an equilibrium at the origin. For small

shape deviations this equilibrium is stable.
Noting that S is introduced to simplify the notation according to

S ¼
X1
m¼1

DS
m þ

X1
n¼1

DR
n o1. (39)
Fig. 6. The geometry of the generator for the two cases; DR
240;DS

240 (to the left) and DR
240;DS

340 (to the right).
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It is proved (see Appendix A for the proof) that the equilibrium is stable if

2pþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ 4
p

ð1� SÞ3
o

2pk

km

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ 4
p

ð1þ SÞ3
. (40)

Thus, if Eq. (38) is satisfied, Eqs. (19) have an equilibrium at the origin. This equilibrium is stable if Eq. (40)
holds, and is for the specific machine considered in Table 1, if So0:16385.

6. Simulated results

Note that the numerical values used in all simulations presented in this paper are taken from an existing
18MW hydropower generator. These values are given in Table 1. Eqs. (19) is simulated using a fourth-order
Runge–Kutta method. The force integrals given by Eqs. (22) and (23) are solved numerically at each step by
Simpsons integrating method. For fixed parameters and different initial positions in the XY -plane, the
trajectory is examined to see if it converges to an attractor without any impacts between the rotor and stator.
The initial velocities are set to zero. With this method, an approximation is obtained of the two-dimensional
XY -subspace of the basin of attraction to attractors without impacts between the rotor and stator. This
approximation is denoted AXY . The XY -plane is covered by a uniform grid of points. The simulation
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continues until the rotor hits the stator, comes close to an equilibrium, or reaches a time limit. The condition
for reaching an equilibrium was set to ðX 0Þ2 þ ðY 0Þ2o10�9. The time limit was set to 100 revolutions of the
rotor. If the time limit or an equilibrium is attained, the corresponding initial position is said to be converging
(otherwise diverging), and is added to AXY . Since the shape of AXY can be complicated, both the size and the
shape of AXY are considered. To measure the size, let nXY be the number of elements in AXY , and to measure
the shape, let dXY be the distance from the origin to the diverging point closest to the origin. This means that
dXY gives the radius of the largest circle, centred at the origin that is covered by AXY . Then, to scale these
measures, define

NXY ¼
nXY

n0
XY

; DXY ¼
dXY

d0
XY

, (41)

where n0
XY and d 0

XY correspond to the case of ideal circular generator geometry. From Eq. (34), d 0
XY ¼ 0:6588.

Figs. 7–9 show NXY and DXY as a function of different shape deviations. The uniform grid is chosen to give
n0

XY ¼ 1225. The phase angles ar
n and as

m are chosen due to symmetry. One simulation is needed for each phase
angle combination. The values of nXY and dXY is taken as the worst case for each point in the DR

n DS
m-plane. Six

phase angle combinations are considered in Figs. 7–9.
Fig. 10 also shows NXY and DXY as a function of different shape deviations, though as a function of one

parameter at a time. The symmetry therefore allows the phase angles to be chosen to zero. The uniform grid is
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refined to give n0
XY ¼ 13637. Deviations of the rotor are considered in Fig. 10(a,b), and deviations of the stator

in Fig. 10(c,d).
Figs. 11 and 12 shows AXY and the corresponding attractor(s) for different shapes of the rotor and stator. In

the figures the circle with radius d 0
XY ¼ 0:6588 is included to indicate the boundary of AXY for the ideal circular

generator. The phase angles are chosen to zero and the uniform grid is chosen to give n0
XY ¼ 13637. In Figs. 7–10,

the location of some of these illustrations can be found by using the values of DR
n and DS

m for each case. Deviations
of the rotor are considered in Fig. 11(a–d), and deviations of the stator in Fig. 11(e–h). Fig. 12 shows some cases
of DS

m and DR
n with and without DS

1 (stator eccentricity), and also two cases of very small AXY .

7. Discussion and conclusions

In this paper, a mathematical model consisting of a Fourier series representation is developed to describe an
arbitrary non-circular shape of the rotor and the stator. Since the length of these generators is relatively small,
all parameters are considered constant in the z-direction for simplicity.

In Section 3.1, the UMP is derived through the law of energy conservation. The generator is treated as a
continuum. This approximation can be made since the number of poles in hydropower generators are high
(the generator considered in this paper has 44 poles). This method is used since it works for an arbitrary
disturbed air-gap. Fig. 4 illustrates the complexity of the UMP even for simple shape deviations.
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A linear model of the UMP is proposed in Section 5.1, since the nonlinear UMP derived in Section 3.1 has an
almost linear behaviour for small eccentricities. When considering the linear model only DR

1 and DS
1 (rotor and

stator eccentricity), affect the UMP and, therefore, the dynamics in the electric machine. Recall Eqs. (27) and (28).
This result differs strongly from the nonlinear UMP, see Fig. 4(b), indicating the importance of considering the
nonlinear effects. The results from Eqs. (27) and (28) can be understood by observing that the rotor/stator
eccentricity is the only case where the deviation moves the geometrical centre of the rotor/stator, recall Fig. 2.
Thus, there will be a constant force with stator eccentricity, and an oscillating force with rotor eccentricity.

In Section 5.2, the stability due to eccentricity is analysed. In the case of small stator eccentricity, one stable
equilibrium exists. Following this equilibrium for increasing eccentricity, it is shown that the stability is lost in
a fold bifurcation at DS

1 � 0:1810. In the case of rotor eccentricity, a stable limit cycle exists. Following this
cycle for increasing eccentricity, it is shown that the stability is lost at DR

1 � 0:1658, See Fig. 5. This shows,
when assuming that no other stable attractors exist, that the generator cannot operate without rotor–stator
contact if rotor or stator eccentricity exceeds these values. The assumption above is strengthened by the
simulations in Section 6. Fig. 7(a) agrees with these maximum values of eccentricity.
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In Section 5.3, the UMP is proven to be zero for shape deviations according to Eq. (38), i.e. for these cases
there exists an equilibrium at the origin. This result is general for electric machines if the UMP is assumed to
be a function of only the air-gap width. It is proven that this equilibrium is stable if So0:16385 for the
generator considered. Note that if all shape perturbation parameters are known for a machine, S can easily be
calculated by adding these parameters according to Eq. (39). By assuming that this equilibrium is reached, this
indicates that shape deviations satisfying Eq. (38) are preferable compared to other deviations for a generator.
This assumption is strengthened by the simulations in Section 6, showing that in all tested cases, the trajectory
reaches the origin.

Simulations of the basins of attraction are carried out in Section 6. From these simulations the importance
of the shape deviations can be studied for the generator in question. To approximate the robustness of the safe
solutions of a shape perturbed generator, both the size and the shape of AXY , (recalling that this is the
approximation of the two-dimensional XY -subspace of the basin of attraction) will be approximated. It is
advantageous if AXY is large and convex. (Recall that the measure of the size is NXY , and the measure of the
shape is DXY , see Eq. (41) for the definitions). From Fig. 7(a) it is concluded that the effect of rotor and stator
eccentricity, is nearly similar on NXY . From Fig. 7(b) it can be seen that the same holds for DXY . Hence, rotor
and stator eccentricities affect the robustness in nearly the same way. Fig. 7(c,d) shows some differences
between the rotor and stator for the case DR

240, DS
240, note some strange nonlinear effects near DR

2 ¼ 0:25,
DS
2 ¼ 0:15. Fig. 8 illustrates some differences between the two cases DR

240, DS
340 and DR

340, DS
240. Note

from Fig. 8(a,b) and Fig. 7(c,d) the strange behaviour for large stator perturbations and 0oDR
2o0:05.

Similarities between the rotor and stator are shown in Fig. 9, where the same shape deviations are considered
for the rotor in Fig. 9(a,b) and for the stator in Fig. 9(c,d). Fig. 9(a,b) shows rotor eccentricity combined with
DR
340 whereas Fig. 9(c,d) shows stator eccentricity combined with DS

340. Figs. 7–10 all illustrate that the
effect of the shape deviations to NXY and DXY decreases when m and n increases. Thus, assuming the same
amount of deviation, this shows that eccentricity, i.e. DR

1 and DS
1 , are more severe than deviations

corresponding to higher m and n. Sharp knees are observed near DR
1 ¼ 0:05 and near DS

1 ¼ 0:05 in Fig. 10,
meaning that deviations less than 5% of the air-gap of the generator only marginally affect the robustness.
Moreover, it is of interest to discuss AXY . Complicated AXY occurs in some cases shown in Fig. 12. This
illustrates the complexity of the dynamics; therefore, both NXY and DXY have to be considered for
investigating how robust different shape deviations are in these cases. Simple periodic attractors occur in some
cases, but more complicated attractors also exist. See Fig. 12(b–h). In Fig. 12(b) there are at least two
attractors present, with very long period or chaotic behaviour, and in Fig. 12(h), there are two attractors
present. This also indicates the existence of multiple solutions.

Note that o ¼ 14:2 rad=s was used in all simulations. Since o is not close to od , recall Eq. (18), and since
rotor eccentricity will give synchronous whirling motion, the rotor is not close to resonance in the case of rotor
eccentricity. Thus, the results presented in Section 6, showing that the cases of rotor eccentricity being the
worst in the case of robustness, cannot be trivially explained by excitations of the damped natural frequency.
This can also be understood by observing that stator eccentricity affects the robustness nearly similar to rotor
eccentricity, and stator eccentricity gives only a stationary point.

Since UMP can cause large vibrations in hydropower generators which can destroy the machine, the shape
of the rotor and stator is frequently measured during maintenance. The results from this paper can be used to
evaluate such measurements and estimate the stability and robustness through simulations. When using the
mathematical methods presented in this paper on a real machine, the unbalance and the dominating shape
perturbation parameters has to be included. Then a simulation of the robustness can be carried out, where
NXY and DXY will be found for the generator considered. Many results presented in this paper are general and
can be applied to different electric motors and generators. This paper indicates which tolerances are more
important than others when constructing new machines.
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Appendix A. Proof of Eq. (38)

The eigenvalues of the Jacobian matrix to Eqs. (19) at the origin yield,

l1;2 ¼ �zþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ a� b

q
,

l3;4 ¼ �z�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ a� b

q
, ðA:1Þ

where

a ¼
1

2

qFX

qX
þ

qFY

qY

� �
� 1; b ¼

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qF X

qX
�

qF Y

qY

� �2

þ 4
qF X

qY

qF Y

qX

s
. (A.2)

All derivatives are hereinafter evaluated at the origin. Clearly Re l3;4o0. From Eqs. (22) and (23), it is
concluded that

qF X

qY
¼

qF Y

qX
. (A.3)

Therefore, b40 and real, and it follows that Re l1;2o0 if and only if

aþ bo0. (A.4)

The derivatives of the force integrals have the following bounds:

Lo
qF X

qX
oU ; Lo

qFY

qY
oU (A.5)

and

qF X

qY

����
����o 1

p
ðU � LÞ, (A.6)

where

L ¼
km

kð1þ SÞ3
and U ¼

km

kð1� SÞ3
. (A.7)

Noting that S is introduced to simplify the notation. To prove Eqs. (A.5) and (A.6), observe from Eqs. (3) and
(20) that

S ¼
X1
m¼1

DS
m þ

X1
n¼1

DR
n o1. (A.8)

Further, since DR
n 40 and DS

m40,

Gð0; 0; t;jÞ ¼ 1þ
X1
m¼1

DS
m cos mðjþ as

mÞ �
X1
n¼1

DR
n cos nðjþ ar

n � otÞ

X1� S. ðA:9Þ
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With Eq. (A.9), the upper bound of qFX=qX yields

qFX

qX
¼

km

2pk

Z 2p

0

q
qX

1

Gð0; 0; t;jÞ2

� �
cos jdj

¼
km

kp

Z 2p

0

cos2 j

Gð0; 0; t;jÞ3
dj

p
km

kpð1� SÞ3

Z 2p

0

cos2 jdj

¼
km

kð1� SÞ3
¼ U . ðA:10Þ

The proof of all inequalities in Eq. (A.5) is similar. To prove Eq. (A.6), consider the upper bound of qF X=qY ,
here k ¼ km=ð2pkÞ is introduced, and the arguments of G are omitted to save space,

qF X

qY
¼

km

2pk

Z 2p

0

sin 2j

Gð0; 0; t;jÞ3
dj

¼ k
Z p=2

0

sin 2j

G3
djþ

Z p

p=2

sin 2j

G3
djþ

Z 3p=2

p

sin 2j

G3
djþ

Z 2p

3p=2

sin 2j

G3
dj

 !

pk

R p=2
0

sin 2j

ð1� SÞ3
djþ

R p
p=2 sin 2j

ð1þ SÞ3
djþ

R 3p=2
p sin 2j

ð1� SÞ3
djþ

R 2p
3p=2 sin 2j

ð1þ SÞ3
dj

 !

¼
km

kp
1

ð1� SÞ3
�

1

ð1þ SÞ3

� �
¼

1

p
ðU � LÞ. ðA:11Þ

The proof of the lower bound in Eq. (A.6) is similar. With Eqs. (A.5), (A.6) and (A.7), Eq. (A.4) holds true if

aþ boU � 1þ
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðU � LÞ2 þ

1

p2
ðU � LÞ2

r
o0. (A.12)

This simplifies to

2pþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ 4
p

ð1� SÞ3
o

2pk

km

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ 4
p

ð1þ SÞ3
, (A.13)

and the proof is complete.
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